Defining custom LinearMap
types
In this section, we want to demonstrate on a simple, actually built-in, linear map type how to define custom LinearMap
subtypes. First of all, LinearMap{T}
is an extendable abstract type, where T
denotes the eltype
.
Basics
As an example, we want to define a map type whose objects correspond to lazy analogues of fill
ed matrices. Naturally, we need to store the filled value λ
and the size
of the linear map.
using LinearMaps, LinearAlgebra
struct MyFillMap{T} <: LinearMaps.LinearMap{T}
λ::T
size::Dims{2}
function MyFillMap(λ::T, dims::Dims{2}) where {T}
all(≥(0), dims) || throw(ArgumentError("dims of MyFillMap must be non-negative"))
promote_type(T, typeof(λ)) == T || throw(InexactError())
return new{T}(λ, dims)
end
end
By default, for any A::MyFillMap{T}
, eltype(A)
returns T
. Upon application to a vector x
and/or interaction with other LinearMap
objects, we need to check consistent sizes.
Base.size(A::MyFillMap) = A.size
By a couple of defaults provided for all subtypes of LinearMap
, we only need to define a LinearMaps._unsafe_mul!
method to have a minimal, operational type. The (internal) function _unsafe_mul!
is called by LinearAlgebra.mul!
, constructors, and conversions and only needs to be concerned with the bare computing kernel. Dimension checking is done on the level of mul!
etc. Factoring out dimension checking is done to minimise overhead caused by repetitive checking.
Multiple dispatch at the _unsafe_mul!
level happens via the second (the map type) and the third arguments (AbstractVector
or AbstractMatrix
, see the Application to matrices section below). For that reason, the output argument can remain type-unbound.
function LinearMaps._unsafe_mul!(y, A::MyFillMap, x::AbstractVector)
return fill!(y, iszero(A.λ) ? zero(eltype(y)) : A.λ*sum(x))
end
Again, due to generic fallbacks the following now "just work":
- out-of-place multiplication
A*x
, - in-place multiplication with vectors
mul!(y, A, x)
, - in-place multiply-and-add with vectors
mul!(y, A, x, α, β)
, - in-place multiplication and multiply-and-add with matrices
mul!(Y, A, X, α, β)
, - conversion to a (sparse) matrix
Matrix(A)
andsparse(A)
, - complete slicing of columns (and rows if the adjoint action is defined).
A = MyFillMap(5.0, (3, 3)); x = ones(3); sum(x)
3.0
A * x
3-element Vector{Float64}:
15.0
15.0
15.0
mul!(zeros(3), A, x)
3-element Vector{Float64}:
15.0
15.0
15.0
mul!(ones(3), A, x, 2, 2)
3-element Vector{Float64}:
32.0
32.0
32.0
mul!(ones(3,3), A, reshape(collect(1:9), 3, 3), 2, 2)
3×3 Matrix{Float64}:
62.0 152.0 242.0
62.0 152.0 242.0
62.0 152.0 242.0
Multiply-and-add and the MulStyle
trait
While the above function calls work out of the box due to generic fallbacks, the latter may be suboptimally implemented for your custom map type. Let's see some benchmarks.
using BenchmarkTools
@benchmark mul!($(zeros(3)), $A, $x)
BenchmarkTools.Trial: 10000 samples with 999 evaluations per sample.
Range (min … max): 7.722 ns … 28.070 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 7.742 ns ┊ GC (median): 0.00%
Time (mean ± σ): 7.820 ns ± 0.768 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█
█▃▂▄▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▂▁▁▂▂▂▁▂▁▂▂▂▁▁▁▂▁▂▂▁▁▁▁▂▁▁▂▁▁▂▁▁▁▂ ▂
7.72 ns Histogram: frequency by time 9.08 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
@benchmark mul!($(zeros(3)), $A, $x, $(rand()), $(rand()))
BenchmarkTools.Trial: 10000 samples with 992 evaluations per sample.
Range (min … max): 36.186 ns … 8.716 μs ┊ GC (min … max): 0.00% … 99.26%
Time (median): 38.105 ns ┊ GC (median): 0.00%
Time (mean ± σ): 46.496 ns ± 149.626 ns ┊ GC (mean ± σ): 9.91% ± 3.40%
██▆▄▃▂▃▂▁▁ ▁
███████████▇▇▇▆▆▆▅▆▇▇▇▇▆▅▅▆▄▆▄▅▅▅▅▅▅▄▅▄▅▅▄▄▂▄▄▃▄▄▅▃▅▄▃▄▄▄▅▃▄ █
36.2 ns Histogram: log(frequency) by time 129 ns <
Memory estimate: 80 bytes, allocs estimate: 2.
The second benchmark indicates the allocation of an intermediate vector z
which stores the result of A*x
before it gets scaled and added to (the scaled) y = zeros(3)
. For that reason, it is beneficial to provide a custom "5-arg _unsafe_mul!
" if you can avoid the allocation of an intermediate vector. To indicate that there exists an allocation-free implementation of multiply-and-add, you should set the MulStyle
trait, whose default is ThreeArg()
, to FiveArg()
.
LinearMaps.MulStyle(A::MyFillMap) = FiveArg()
function LinearMaps._unsafe_mul!(y, A::MyFillMap, x::AbstractVector, α, β)
if iszero(α)
!isone(β) && rmul!(y, β)
return y
else
temp = A.λ * sum(x) * α
if iszero(β)
y .= temp
elseif isone(β)
y .+= temp
else
y .= y .* β .+ temp
end
end
return y
end
With this function at hand, let's redo the benchmark.
@benchmark mul!($(zeros(3)), $A, $x, $(rand()), $(rand()))
BenchmarkTools.Trial: 10000 samples with 999 evaluations per sample.
Range (min … max): 9.266 ns … 44.096 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 9.286 ns ┊ GC (median): 0.00%
Time (mean ± σ): 9.396 ns ± 0.938 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█▅ ▁
██▃▁▁▁▁▁▁▁▁▁▃▄▅▃▄▁▁▃▃▁▁▁▁▁▁▁▁▁▁▁▁▁▄▃▄▃▃▃▁▃▁▅█▇▄▁▁▁▁▁▁▁▃▃▁▃ █
9.27 ns Histogram: log(frequency) by time 12.4 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
There you go, the allocation is gone and the computation time is significantly reduced.
Adjoints and transposes
Generically, taking the transpose (or the adjoint) of a (real, resp.) map wraps the linear map by a TransposeMap
, taking the adjoint of a complex map wraps it by an AdjointMap
.
typeof(A')
LinearMaps.TransposeMap{Float64, Main.MyFillMap{Float64}}
Not surprisingly, without further definitions, multiplying A'
by x
yields an error.
try A'x catch e println(e) end
ErrorException("transpose not implemented for 3×3 Main.MyFillMap{Float64}")
If the operator is symmetric or Hermitian, the transpose and the adjoint, respectively, of the linear map A
is given by A
itself. So let us define corresponding checks.
LinearAlgebra.issymmetric(A::MyFillMap) = A.size[1] == A.size[2]
LinearAlgebra.ishermitian(A::MyFillMap) = isreal(A.λ) && A.size[1] == A.size[2]
LinearAlgebra.isposdef(A::MyFillMap) = (size(A, 1) == size(A, 2) == 1 && isposdef(A.λ))
Base.:(==)(A::MyFillMap, B::MyFillMap) = A.λ == B.λ && A.size == B.size
These are used, for instance, in checking symmetry or positive definiteness of higher-order LinearMap
s, like products or linear combinations of linear maps, or signal to iterative eigenproblem solvers that real eigenvalues are to be computed. Without these definitions, the first three functions would return false
(by default), and the last one would fall back to ===
.
With this at hand, we note that A
above is symmetric, and we can compute
transpose(A)*x
3-element Vector{Float64}:
15.0
15.0
15.0
This, however, does not work for nonsquare maps
try MyFillMap(5.0, (3, 4))' * ones(3) catch e println(e) end
ErrorException("transpose not implemented for 3×4 Main.MyFillMap{Float64}")
which require explicit adjoint/transpose handling, for which there exist two distinct paths.
Path 1: Generic, non-invariant LinearMap
subtypes
The first option is to write LinearMaps._unsafe_mul!
methods for the corresponding wrapped map types; for instance,
function LinearMaps._unsafe_mul!(
y,
transA::LinearMaps.TransposeMap{<:Any,<:MyFillMap},
x::AbstractVector
)
λ = transA.lmap.λ
return fill!(y, iszero(λ) ? zero(eltype(y)) : transpose(λ)*sum(x))
end
Now, the adjoint multiplication works.
MyFillMap(5.0, (3, 4))' * ones(3)
4-element Vector{Float64}:
15.0
15.0
15.0
15.0
If you have set the MulStyle
trait to FiveArg()
, you should provide a corresponding 5-arg mul!
method for LinearMaps.TransposeMap{<:Any,<:MyFillMap}
and LinearMaps.AdjointMap{<:Any,<:MyFillMap}
.
Path 2: Invariant LinearMap
subtypes
Before we start, let us delete the previously defined method to make sure we use the following definitions.
Base.delete_method(
first(methods(
LinearMaps._unsafe_mul!,
(Any, LinearMaps.TransposeMap{<:Any,<:MyFillMap}, AbstractVector))
)
)
The second option is when your class of linear maps that are modelled by your custom LinearMap
subtype are invariant under taking adjoints and transposes.
LinearAlgebra.adjoint(A::MyFillMap) = MyFillMap(adjoint(A.λ), reverse(A.size))
LinearAlgebra.transpose(A::MyFillMap) = MyFillMap(transpose(A.λ), reverse(A.size))
With such invariant definitions, i.e., the adjoint/transpose of a MyFillMap
is again a MyFillMap
, no further method definitions are required, and the entire functionality listed above just works for adjoints/transposes of your custom map type.
mul!(ones(3), A', x, 2, 2)
3-element Vector{Float64}:
32.0
32.0
32.0
MyFillMap(5.0, (3, 4))' * ones(3)
4-element Vector{Float64}:
15.0
15.0
15.0
15.0
Now that we have defined the action of adjoints/transposes, the following right action on vectors is automatically defined:
ones(3)' * MyFillMap(5.0, (3, 4))
1×4 adjoint(::Vector{Float64}) with eltype Float64:
15.0 15.0 15.0 15.0
and transpose(x) * A
correspondingly, as well as in-place multiplication
mul!(similar(x)', x', A)
1×3 adjoint(::Vector{Float64}) with eltype Float64:
15.0 15.0 15.0
and mul!(transpose(y), transpose(x), A)
.
Application to matrices
By default, applying a LinearMap
A
to a matrix X
via A*X
does not apply A
to each column of X
viewed as a vector, but interprets X
as a linear map, wraps it as such and returns (A*X)::CompositeMap
. Calling the in-place multiplication function mul!(Y, A, X)
for matrices, however, does compute the columnwise action of A
on X
and stores the result in Y
. In case there is a more efficient implementation for the matrix application, you can provide _unsafe_mul!
methods with signature _unsafe_mul!(Y, A::MyFillMap, X::AbstractMatrix)
, and, depending on the chosen path to handle adjoints/transposes, corresponding methods for wrapped maps of type AdjointMap
or TransposeMap
, plus potentially corresponding 5-arg mul!
methods. This may seem like a lot of methods to be implemented, but note that adding such methods is only necessary/recommended for increased performance.
Computing a matrix representation
In some cases, it might be necessary to compute a matrix representation of a LinearMap
. This is essentially done via the [LinearMaps._unsafe_mul!(::Matrix,::LinearMap,::Number)]
(@ref) method, for which a generic fallback exists: it applies the LinearMap
successively to the standard unit vectors.
F = MyFillMap(5, (100,100))
M = Matrix{eltype(F)}(undef, size(F))
@benchmark Matrix($F)
BenchmarkTools.Trial: 10000 samples with 8 evaluations per sample.
Range (min … max): 3.403 μs … 691.901 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 4.480 μs ┊ GC (median): 0.00%
Time (mean ± σ): 6.794 μs ± 13.515 μs ┊ GC (mean ± σ): 17.71% ± 12.52%
██▆▃▂▁ ▂
██████████▇▅▇▄▄▅▄▁▃▁▁▁▃▁▄▄▃▁▃▃▁▁▁▆▇▆█▇▇▆▇▆▅▅▁▃▁▄▁▅▅▆▇▇▇▇▇▇▇ █
3.4 μs Histogram: log(frequency) by time 55.7 μs <
Memory estimate: 79.11 KiB, allocs estimate: 5.
@benchmark LinearMaps._unsafe_mul!($(Matrix{Int}(undef, (100,100))), $(MyFillMap(5, (100,100))), true)
BenchmarkTools.Trial: 10000 samples with 9 evaluations per sample.
Range (min … max): 2.654 μs … 7.856 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 3.047 μs ┊ GC (median): 0.00%
Time (mean ± σ): 3.115 μs ± 450.460 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▇▂ █▁
▅██▅▃▃▃▂▂▂▇██▄▄▄▅▄▃▃▂▂▂▂▂▂▂▂▂▁▂▁▁▁▁▁▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▂
2.65 μs Histogram: frequency by time 4.67 μs <
Memory estimate: 928 bytes, allocs estimate: 2.
If a more performant implementation exists, it is recommended to overwrite this method, for instance (as before, size checks need not be included here since they are handled by the corresponding LinearAlgebra.mul!
method):
LinearMaps._unsafe_mul!(M, A::MyFillMap, s::Number) = fill!(M, A.λ*s)
@benchmark Matrix($F)
BenchmarkTools.Trial: 10000 samples with 9 evaluations per sample.
Range (min … max): 1.980 μs … 203.162 μs ┊ GC (min … max): 0.00% … 94.58%
Time (median): 2.996 μs ┊ GC (median): 0.00%
Time (mean ± σ): 5.133 μs ± 9.716 μs ┊ GC (mean ± σ): 21.43% ± 12.53%
▇█▅▅▂ ▁ ▂
██████▇▅▁▁▄▅▃▃▄▄▃▃▄▄▁▃▄▄▁▄▁▄▁▁▁▃▁▁▇████▇▅▄▁▁▁▁▃▄▅▅▄▆▆▇▇▇▆▇▆ █
1.98 μs Histogram: log(frequency) by time 49.2 μs <
Memory estimate: 78.20 KiB, allocs estimate: 3.
@benchmark LinearMaps._unsafe_mul!($(Matrix{Int}(undef, (100,100))), $(MyFillMap(5, (100,100))), true)
BenchmarkTools.Trial: 10000 samples with 47 evaluations per sample.
Range (min … max): 877.383 ns … 4.969 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 903.596 ns ┊ GC (median): 0.00%
Time (mean ± σ): 943.272 ns ± 173.186 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▄█▅▅▃▃▂▂▁▁▁▃▁▁ ▁
████████████████▇▆▇▇▆▆▆▅▅▅▃▄▅▅▅▃▄▄▄▃▄▃▄▄▄▄▃▁▄▃▄▁▁▃▄▄▄▄▃▃▁▄▄▃▄ █
877 ns Histogram: log(frequency) by time 1.82 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
As one can see, the above runtimes are dominated by the allocation of the output matrix, but still overwriting the multiplication kernel yields a speed-up of about factor 3 for the matrix filling part.
Slicing
As usual, generic fallbacks for LinearMap
slicing exist and are handled by the following method hierarchy, where at least one of I
and J
has to be a Colon
:
Base.getindex(::LinearMap, I, J)
-> LinearMaps._getindex(::LinearMap, I, J)
The method Base.getindex
checks the validity of the the requested indices and calls LinearMaps._getindex
, which should be overloaded for custom LinearMap
s subtypes. For instance:
@benchmark F[1,:]
BenchmarkTools.Trial: 10000 samples with 216 evaluations per sample.
Range (min … max): 334.509 ns … 53.546 μs ┊ GC (min … max): 0.00% … 84.17%
Time (median): 357.935 ns ┊ GC (median): 0.00%
Time (mean ± σ): 488.391 ns ± 1.030 μs ┊ GC (mean ± σ): 11.63% ± 11.56%
█▆▅▃▂▁ ▂▃▂▁ ▁
██████▇▇▆▆▅▄▄▆▅▆▄▅▃▅▅▅▄▄▁▁▄▃█████▇▆▆▆▅▅▄▁▁▁▃▃▁▁▁▁▁▁▁▁▅▇▇▇▇▇█ █
335 ns Histogram: log(frequency) by time 2.01 μs <
Memory estimate: 1.83 KiB, allocs estimate: 5.
LinearMaps._getindex(A::MyFillMap, ::Integer, J::Base.Slice) = fill(A.λ, axes(J))
@benchmark F[1,:]
BenchmarkTools.Trial: 10000 samples with 303 evaluations per sample.
Range (min … max): 269.743 ns … 30.750 μs ┊ GC (min … max): 0.00% … 96.31%
Time (median): 282.310 ns ┊ GC (median): 0.00%
Time (mean ± σ): 364.851 ns ± 694.473 ns ┊ GC (mean ± σ): 8.78% ± 9.93%
█▅▄▂▁ ▁▄▃▂ ▁
█████▇▇▅▄▄▁▁▁▄▁▃▃▃▄▄█████▇▅▄▄▄▄▃▄▃▃▁▁▁▃▃▁▁▁▁▁▁▁▁▁▁▃▄▁▁▁▃▆▆▆▇▇ █
270 ns Histogram: log(frequency) by time 1.4 μs <
Memory estimate: 944 bytes, allocs estimate: 3.
Note that in Base.getindex
Colon
s are converted to Base.Slice
via Base.to_indices
, thus the dispatch must be on Base.Slice
rather than on Colon
.
This page was generated using Literate.jl.